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Since the first isolation of a stable diphosphene (ArPdPAr;
Ar ) 2,4,6-tri-tert-butylphenyl)1 several examples of stable
diphosphenes,2 aza-3a and phosphaarsenes3b,c (REdAsR; E) N,
P), and diarsenes (RAsdAsR),3c,4 i.e., the heavier congeners of
an azo compound, have been synthesized by taking advantage of
steric protection with bulky substituents. Although theoretical
calculations predict that all the doubly bonded compounds
between heavier group 15 elements can be isolated as stable
species with appropriate steric protection groups,5 no stable
distibene (RSbdSbR) and dibismuthene (RBidBiR) have been
isolated so far. Very recently, however, we have succeeded in
the synthesis and characterization of the first stable dibismuthene
[TbtBidBiTbt (1)],6 i.e., the ultimate doubly bonded compound
consisting of the heaviest nonradioactive element, by utilizing
an efficient steric protection group, 2,4,6-tris[bis(trimethylsilyl)-
methyl]phenyl (denoted as Tbt hereafter).7 The successful
isolation of 1 prompted us to challenge the synthesis and
characterization of the missing stable antimony-antimony double
bond compound. Here, we present the first isolation of a stable
distibene, TbtSbdSbTbt (2), and its unique reaction with mo-
lecular oxygen in the crystalline state.
Distibene2was synthesized by the same method as in the case

of 1, i.e., deselenation reaction of the 1,3,5,2,4,6-triselenatristibane
3 (E ) Sb),8 which was prepared by the reaction of TbtSbCl2

8

with Li 2Se in THF, with excess amount of hexamethylphospho-
rous triamide in toluene at 100°C in a sealed tube (Scheme 1).
After heating for 12 h the solution turned green and the expected
distibene2, which precipitated from the mixture on cooling, was
isolated in 94% yield by filtration in a glovebox filled with argon
as deep green single crystals.8

Distibene2 is the first example of a stable antimony-antimony
double bond, and the green solution of2 in hexane showed two
absorption maxima atλ1 ) 599 nm (ε 170) andλ2 ) 466 nm (ε
5200), which were assigned to the nf π* andπ f π* transitions
of the SbdSb chromophore, respectively. The absorption maxima
thus obtained for2 lie between those for the previously reported
stable diarsenes4 and those for the dibismuthene1,6 and the
experimentally observed red shifts for the double-bond systems
of heavier group 15 elements on going from P to Bi agree with
the changes in the n,π, and π* orbital levels calculated for
HEdEH (E) P, As, Sb, and Bi).9 Distibene2 showed a strong
Raman line at 207 cm-1 (solid; excitation, He-Ne laser 632.8
nm) which is much higher than the frequencies observed for
distibines (e.g., Ph2Sb-SbPh2 141 cm-1).10

X-ray crystallographic analysis of the green crystal revealed
the molecular geometry of distibene2 as shown in Figure 1, which
was found to be completely isomorphous with the dibismuthene
1. Considerable bond shortening (7%) of the Sb-Sb bond length
[2.642(1) Å] in 2 as compared with that reported for Ph2Sb-
SbPh2 [2.837 Å]10 clearly indicates its double-bond character,
while the observed Sb-Sb-C bond angle of 101.4(1)°, which
deviates greatly from the ideal sp2 hybridized bond angle (120°)
and approaches 90°, suggests that2 has a nonhybridized Sb-Sb
double bond due to the 5s25p3 valence shell corelike nature of
the Sb atom as in the case of dibismuthene1.
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Figure 1. Perspective view of the crystal structure of distibene2 along
the c axis. Selected bond lengths (Å) and angles (deg): Sb(1)-Sb(1)*
2.642(1), Sb(1)-C(1) 2.181(4), Sb(1)*-Sb(1)-C(1) 101.4(1).

Scheme 1
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With the stable distibene2 in hand, we have examined the
reactivity of the Sb-Sb double bond toward several reagents.
Treatment of2 with bromine and iodine in carbon tetrachloride
at room temperature resulted in the cleavage of the Sb-Sb bond
to give the corresponding dihalostibines TbtSbBr2 (4) and TbtSbI2
(5) in quantitative yields, respectively,8 while the reaction of2
with elemental selenium in tetrahydrofuran at 70°C gave the
precursor3 (E ) Sb; 23%) together with a triselenide TbtSe3Tbt
(16%).8 On the other hand, distibene2 underwent a [2+3]-
cycloaddition reaction with bulky aryl-substituted nitrile oxides
ArCNO [Ar ) 2,4,6-trimethoxyphenyl (Tmp) or 2,4,6-trimeth-
ylphenyl (Mes)] to afford the corresponding adducts6 and7 in
59 and 58% yields, respectively.8

Furthermore, during the course of our investigation of the
reactivity of2 we have found a unique, interesting reactivity of
distibene2with oxygen. Although distibene2 reacts with oxygen
in solution quite rapidly to give quantitatively the corresponding
colorless 1,3,2,4-dioxadistibetane derivative8,8 2 is considerably
stable in the solid state in the open air. The crystals of2 remained
dark green for several hours, but they slowly reacted with
atmospheric oxygen to give8 quantitatively. Of particular note
is that in the crystalline state2 reacts with molecular oxygen while
retaining its crystallinity. Thus, the reaction proceeds from single
crystals of2 to single crystals of8.
This unique oxidation process of2 in the crystalline phase was

successfully monitored by repeated measurements of the cell
dimensions using an X-ray diffraction technique with an imaging
plate Weissenberg diffractometer.11 In Figure 2 are shown the
changes of theb axis length and unit cell volume. They clearly
indicate that the crystal dimensions of2 abruptly changed to those
of 8 within 10 h after an induction period (ca. 30 h), and after
completion of the transformation of the unit cell dimensions three-
dimensional intensity data of8were collected using the identical
crystal initially used for the structural analysis of2.12

In Figure 3 is shown the crystal structure of dioxadistibetane
8 viewed along thec axis together with selected intramolecular
parameters. The insertion of two oxygen atoms into the Sb-Sb
double bond effects only a slight change in the cell dimensions,
but leads to the elongation of the Sb-Sb distance (ca. 0.4 Å) in
8 [3.040(1) Å] as compared to that of the starting distibene2.
One can reasonably imagine that the extremely bulky Tbt group
may provide molecular oxygen with enough space for the insertion
against the packing force. The presence of the relatively long
induction period is most likely interpreted in terms of a “domino”
type reaction caused by the oxidation of the molecules of2 lying
on the exterior surface of the single crystal. The analysis of the
detailed mechanism is now in progress.
In summary, we have succeeded in the synthesis and charac-

terization of the first stable antimony-antimony double bond
compound, distibene2, the structural and physical properties of
which will be of great importance for the systematic elucidation
of the intrinsic nature of the double bond systems between the
heavier group 15 elements. To our best knowledge, the unique
oxidation reaction of distibene2 in the solid state is also the first
example of an intermolecular chemical reaction with an external
reagent in which the integrity of the crystal is fully preserved.13
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Figure 2. Monitored changes of the cell parameters from2 to 8: (a)
change ofb axis length; (b) change of unit cell volume.

Figure 3. Perspective view of the crystal structure of dioxadistibetane8
along thec axis. Selected bond lengths (Å) and angles (deg): Sb(1)-
O(1) 2.004(7), Sb(1)-O(1)* 1.990(6), Sb(1)-Sb(1)* 3.039(1), Sb(1)-
C(1) 2.176(5), O(1)*-Sb(1)-O(1) 80.9(3), O(1)*-Sb(1)-C(1) 103.9(2),
O(1)-Sb(1)-C(1) 102.8(2), Sb(1)*-Sb(1)-C(1) 107.6(5).

434 J. Am. Chem. Soc., Vol. 120, No. 2, 1998 Communications to the Editor


